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Abstract 

A new physical principle, called Principle of Temperate Action, is introduced to secure 
the convergence of the theory of quantised fields. In order to satisfy this principle, as 
well as the correspondence requirements, a dimensional constant a must be incorporated 
into the Lagrangian, which becomes bounded or increasing sufficiently slowly for its 
arguments tending to infinity. In some cases of temperate actions there appear constraints 
introducing non-local features and]or uncertainties of the order of magnitude of the 
constant a, in spite of the fact that the Lagrangians are local. 

1. The Principle of  Temperate Action 

In order to formulate a more satisfactory theory of particles and their 
interactions it is not necessary to abandon or modify any of the first 
principles constituting the foundations of  the traditional theory of quant- 
ised fields, but only to supplement them by a fundamental assumption of 
a restrictive character. Thus, we preserve the following principles. 

The field equations are to be derived f rom a variational principle with 
a local Lagrangian density 5r dependent upon the arguments x# via the 
field quantities and their first-order derivatives. The Lagrangian must be 
of  a form that allows for a canonical formulation and quantisation whereby 
the Hamiltonian must be real and positive definite. Moreover, in situations 
where gravitation can be neglected, the Lagrangian has to satisfy the 
requirements of  Special Relativity, i.e. has to be a scalar with respect to 
the Poincar6 group. 

On the other hand, in order to  avoid the peculiarities of  the traditional 
theories we have to look for quite unusual types of  Lagrangians and 
Hamiltonians. It  is easy to show that if the Hamiltonian density ~ is 
positive definite and may be majorised by another Hamiltonian density 
~r quadratic in the field quantities and their derivatives, i.e. if there exist 
two numbers M, N so that 

0 ~< ~ ~< MJteo + N (1.1) 

for all values of  their arguments ~, ~,~, then such a theory is free of  the 
usual convergence difficulties. In other words, we get a theory free of  the 
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usual divergences if the Hamiltonian does not increase faster than quad- 
ratically in terms of its arguments tending to infinity. In quantum theory 
the inequalities (1.1) have to be understood as holding for expectation 
values in an arbitrary state. 

Proof: Integrating over the three-dimensional space'~ the inequalities (1.1) 
are seen to hold true also for the global Hamiltonians H and H0. Taking 
a sequence of orthonormal eigenstates of H0 (representing a set of free 
fields) to its eigenvalues E~ ~ we get, from the well-known theorem of 
Eckhart, 

< (E  l IH[E. ) < M E .  + N (1.2) En (o) (o) (o) 

This result, combined with the requirement of positive definiteness, shows 
that to each finite eigenvalue of H0 there exists at least one finite eigenvalue 
of H satisfying the inequalities 

0 <~ E,, <~ ME~ ~ + N (l.2a) 

Thus, H is an acceptable operator and, consequently, the development of 
the system in the course of time, described by the unitary operator exp(iHt) 
is free of any inconsistencies. 

The Hamiltonians ~ satisfying (1.1) may be called,temperate and the 
restrictions (1.1) may be raised to the rank of a fundamental principle, to 
be called the Principle of Temperate Action (PTA). 

The traditional field theories with Lagrangians and Hamiltonians split- 
ring into two parts, so that one (describing free fields) is quadratic, and 
the other (describing the interaction) is a polynomial of degree three or 
higher (i.e. involves products of at least three field quantities), do not 
satisfy our principle. In order to satisfy both PTA and the requirements 
of correspondence with the traditional field theories (in the limit of weak 
fields) it is necessary to incorporate into the Lagrangian a fundamental 
constant a with dimension em 4 in units c = h = 1. 

Examples of field theories consistent with the PTA were investigated 
first by Fradkin (1963) and Efimov (1963a, b, 1965) and, more recently, 
by Hoegh-Krohn (1967) and the present author (Rayski, 1969a, b). One 
of the simplest examples is provided by a real scalar field ~ interacting with 
itself via a non-linear interaction Lagrangian 

~o, = _g~4(1 + a~4)-= (1.3) 

where ~ ~> �89 The quantity M appearing in (1.1) may be chosen in this case 
to be 

M =  1 + Igl m-2ct-1/2 (1.4) 

In the case of repulsive forces (g > 0) the energy is always positive definite, 
while in the case of attractive forces (g < 0) it is so if [g[ is sufficiently small 

t We consider the field in a finite box of periodicity in order to deal with discrete 
eigenvalues of energy. 



THE PRINCIPLE OF TEMPERATE ACTION 309 

or the bare mass m is sufficiently large (the renormalised mass may be quite 
small). A sufficient condition for the positive definiteness of H is, in this 
case,  

[g[ < m2a 1/z (1.5) 

In spite of the fact that such a theory is free of the usual convergence 
difficulties, it did not evoke much interest for the following reasons: 

(i) It seemed to be extremely difficult to handle any practical problems 
in the case of so complicated non-linear interactions. 

(ii) It was argued that, still, there are essential difficulties with the 
construction of a non-trivial S-operator. 

(iii) The way of tempering the interaction by modifying ~ '  in a way 
similar to (1.3) does not seem promising because it cannot be 
applied to electrodynamics. Indeed, any modification ofA ~ would 
destroy the gauge invariance. 

In connection with point (i) it could be argued that the Lagrangians of 
the type (1.3) or similar are discouraging because the only way to handle 
them in practice, is to develop them into a power series and to curtail the 
series after a finite number of terms. But any finite polynomial means an 
untemperate interaction violating the condition (1.1), so that we run again 
into the usual convergence difficulties. However, as pointed out previously 
(Rayski, 1969a, b), a neglection of higher powers of the expansion of (1.3) 
makes sense only in the case of weak fields, and has to be combined with 
a restriction upon the class of state vectors: the state vectors to be taken 
into account in a given approximation have to represent sufficiently weak 
fields. The remaining state vectors (even those only involved in virtual 
states) have to be disregarded completely. By increasing the range of state 
vectors to be used in a computation we also have to increase suitably the 
number of terms of the power series expansion of ~. Thus, there exists a 
simple method of computations starting with a weak field approximation. 

The troubles with the problem of constructing a non-trivial S-operator 
are not connected with any particular form of quantum field theory but 
with the fact that the mere concept of an S-operator is meaningless. As 
I have shown previously (Rayski, 1969c), the usual definitions of the S- 
operator (e.g. as that transforming the ingoing free fields into outgoing 
free fields) are incorrect because the corresponding matrix elements mean 
probability amplitudes in this representation only where s is diagonal. 
Besides, the basis vectors of this representation are not normalisable to 
unity and do not belong to the Hilbert space. The only correct operator 
describing the evolution of the system in the course of time is 
exp [ - i l l ( t 2  - t~)], which obviously does not admit a transition to the limits 
t~/2 -+ :~oo. The amplitudes for transitions between different states charae- 
terised by sharp values of the invariants s, t, u acquire only a meaning by 
careful limiting procedure, starting with non-overlapping wave packets and 
going over to the limit A s  ~ 0 at the very end of the calculation. 
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In order to reconcile electrodynamics with our postulate (1.1) we have 
to modify the Lagrangian as a whole, or, at least, to modify it without 
destroying its gauge-invarant parts: ~aem denoting the Lagrangian of the 
electromagnetic field, and ~eh  denoting the Lagrangian of the charged field 
including the interaction. Thus, 

~a = F(~o , c~ach ) (1.6) 

where F is a function to be chosen so as to satisfy (1.1) as well as the 
requirement of correspondence with the traditional electrodynamics. The 
function F may depend also upon some other gauge-invariant terms, e.g. 
upon (~7, @)2 In particular, we may try the following generalisation 

1 
= - arc tgaA (1.6a) 

a 

where A is the traditional Lagrangian 

A = s176 m + La~h (1.6b) 

However, in this case there appear several problems as to the possibility 
of a canonical formulation and quantisation of the theory of fields described 
by such unusual Lagrangians. We shall illustrate these problems with the 
aid of a few examples. 

2. Examples of Unusual Lagrangians 

The traditional field theories always exhibited the following features 
(often believed to be necessary conditions for quantisation). The range of 
variability of  the field quantities and their first-order derivatives was 
assumed to be unlimited. The Lagrangians were chosen to be real functions 
defined in the whole domain of variability of their arguments q~ and q~,w 
The choice of the Lagrangians was restricted by the following requirement: 
it should be possible to resolve the formulae 

05e 
(2.1) 

uniquely in the form 
= ~(~r, q~, q~,k) (2.2) 

enabling a canonical formulation.t The momenta rr were always real if 
were real and the range of their variability was unlimited. The Hamiltonian 
density could be defined as 

a& ~ . 
J{~ =--~-~ q5 - ~ ~ (2.3) 

t In  special cases one encounters  a s i tuat ion tha t  the r ight -hand sides o f  the  relat ions 
(2.1) are independent of some of the ~'s. These degrees of freedom (field quantities) 
give rise to some equations of constraints and are called variables of constraints in 
contradistinction to the remaining genuine dynamical variables. 
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and expressed uniquely as a function of,r, 6 and their space-like derivatives. 
It represented a real function for arbitrary values of its arguments ~-, 4, 4 ~, k" 

With the aid of a few examples we shall show that it is possible to abandon, 
or weaken, the above assumptions without destroying the possibility of 
obtaining a mathematically consistent and physically acceptable quantum 
theory. 

In the non-relativistic mechanics it was always assumed that a free 
particle is described by a Lagrangian quadratic in the velocity 

L = �89 2 (2.4) 

(only one degree of freedom q = m l / 2 x  is taken into consideration). How- 
ever, the Lagrangian does not need to be as simple as that, even in the 
case of a free particle, if a fundamental constant a, dimensionally indepen- 
dent of c and h, plays a fundamental role in Nature, but it may involve 
the constant a in one way or another. Let us consider as an example 

L = 1_ [1 - V ( 1  - a 4 2 ) ]  (2.5) 
a 

going over into (2.4) in the limit a ~ 0. If  a is positive and we demand 
(2.5) to be real, then there appears a restriction upon the velocity 

1 
4 2 < -  (2.6) 

a 

This restriction means one-sided constraints. Obviously, the general 
solution of the Lagrange equation following from (2.5) represents a motion 
with a constant velocity 

q(t)  = A t  + B (2.7) 

where A = 0 is subjected to the restriction (2.6). 
This theory may be put into a canonical form by postulating the usual 

relation 
OL 

p = ( 2 . 8 )  

and demanding p to be real. The solution of (2.8) with respect to 0 is 

P 
c) = a/(1 + ap z) (2.8a) 

and satisfies automatically the restriction (2.6). Defining the energy in the 
usual way 

OL.  
H = ~ q - L (2.9) 

and introducing (2.8a) we get 

1 [~/(1 + ap z) - 1] (2.9a) H ( p,  q) = -a 
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which is positive definite but otherwise unlimited. The Hamilton equations 
are equivalent to the Lagrange equation and to the relation (2.8) or (2.8a). 
Thus, the canonical formulation is not only possible but also automatically 
takes account of the constraints (2.6). Nothing prevents us from quantising 
such a theory. 

The above example possesses a close field-theoretical analogue if we 
assume the following Lagrangian 

= 211 - ~/(1 - aGV0)] (2.10) 

where ~ 0  is a conventional Lagrangian, e.g. 

oLf0 = �89 _ (grad q~)z _ m z (~z] (2.10a) 

In this case (2.1) becomes 

O~L~ 4 (2.11) 
= 3 4 - V (  l _ a s  v) 

with the solution 

a \ u 2  [1  a \ - 1 / 2  
* = ~r(1 +2(gradq~)z +2m24Z) t + ~ . 2 )  (2.12) 

satisfying automatically the restriction 
2 42 < (grad 4 )  2 q- m 2 4 2 -k - 
a 

(2.13) 

When trying to introduce additionally an interaction, e.g. 

~e' = 044 (2. ~4) 

we have to make the replacement 

~ 0  -+ oL~v0 + ~q~' (2.15) 

but not to add 50' to ~ .  Inasmuch as the interaction term (2.14) appears 
under the square root, the Lagrangian increases quadratically for ~ tending 
to infinity, so that the action is temperate. 

Going over to field quantisation we face the problem of how to define 
functions of the operators q~, '~,k and 7r, which are not polynomials but 
infinite series. It was pointed out that such operator-valued distributions 
are not well defined. However, these objections are intimately connected 
with the use of the Fock representation, and only show that this repre- 
sentation is illegitimate. There exist other representations, inequivalent to 
Fock's representation, for which a broader class of  functions of the field 
operators may be defined. 

Let us consider another example of a non-conventional Lagrangian 

= Gv + V(42) (2.16) 
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where 5r is a conventional Lagrangian whereas 

co for q52> - 
V(~2 ) = a (2.17) 

0 for ~ 1 
a 

This theory is closely analogous to the case of a particle in a box in ordinary 
quantum mechanics, where the restriction Iq[ < L was satisfied by restricting 
the wave functions by a condition 

( q ' l W ) = O  for [q'] ~>L (2.18) 

In close analogy a restriction upon the space of states 

1 
( q ' l ) = O  for ~o2> - (2.19) 

a 

may be introduced in the b-representation where the states are functionals 
of the field quantity r whereas the momentum 7r is represented by a 
functional derivative 

~v(x)- 1 ~ (2.20) 
- 0  

i 3q~(x) 

in the SchrSdinger picture. In this case the q~-representation is certainly 
privileged, whereas the Fock representation acquires (approximately) a 
sense in the limit of weak fields. 

Inasmuch as the space of states (r is restricted by (2.19), it is im- 
possible to construct a state characterised by a value of ~r fixed with an 
arbitrary accuracy. The momentum canonically conjugate to the field 
quantity is no more observable in the usual sense but there appears a new 
type of a (single) uncertainty relation 

ATr/> ~/a (2.21) 

A similar restriction appears if one considers a Lagrangian of the type 

s = s ~ + g ~/(1 - aq~ 4) (2.22) 
a 

3. Conclusion 

Let us conclude with the following remarks. Special Relativity may be 
characterised by the fact that it takes proper account of the existence of 
a dimensional constant c playing a manifestly restrictive role (v < e). Also, 
Quantum Theory consists in a consequent incorporation of a dimensional 
constant h into the framework of physical theories, whereby the role of 
h is also restrictive (namely, Heisenberg's uncertainty relations). Now, there 
appears a possibility of taking proper account of  a third fundamental 
constant a, dimensionally independent of c and h and playing also a 
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manifestly restrictive role by tempering the action and introducing non- 
local features into the theory, in spite of  the fact that the Lagrangians are 
perfectly local. 

Inasmuch as every dynamical quantity becomes dimensionless if  expressed 
in natural units c = h = a = 1 (or acquires a natural unit of  its own), the 
incorporation of the third fundamental constant, so as to modify essentially 
the Lagrangian, may be regarded as completing this development of  physics 
whose main steps in the past were a transition from pre-relativistic to 
relativistic and f rom classical to quantum theories. 

Of  course, we are still very far from the final goal, because we do not 
know yet the exact form of the World-Hamiltonian but only some general 
framework for self-consistent theories. Nevertheless, the fact that, now, we 
are able to construct many examples of  quantised interacting fields, free 
of  any inconsistencies, may be regarded as constituting some progress, in 
comparison with the situation of  yesterday, where only one case was known 
with certainty to be free of  internal contradictions: the case of  free fields. 
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